
NASA Contractor Report 4414

A Unified Viscous Theory of

Lift and Drag of 2-D_Thin

Airfoils and 3-D Thin Wings

John E. Yates

PURCHASE ORDER L-74809C

DECEMBER 1991

Hl/O2

:_

:>:_.:

.. " i2_

i!ii_

'N

_5 _Z
: ;r;

A::

2--7

=!]

i"

--5)

ii

7=

uncl_s

0053171

i:.

.._

_=
. _

222

) T





NASA Contractor Report 4414

A Unified Viscous Theory of

Lift and Drag of 2-D Thin

Airfoils and 3-D Thin Wings

John E. Yates

A.R.A.P. Group

California Research & Technology Division

Titan Corporation

Princeton, New Jersey

Prepared for

Langley Research Center

under Purchase Order L-74809C

National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
Information Program

1991





Abstract

A unified viscous theory of 2-D thin airfoils and 3-D thin wings is developed with

numerical examples. The viscous theory of the load distribution is unique and tends to the

classical inviscid result with Kutta condition in the high Reynolds number limit. A new

theory of 2-D section induced drag is introduced with specific applications to three cases of

interest: 1) constant angle of attack:, 2) parabolic camber; and 3) a flapped airfoil. The

first case is also extended to a profiled leading edge foil. The well-known drag due to

absence of leading edge suction is derived from the viscous theory. It is independent of

Reynolds number for zero thickness and varies inversely with the square root of the

Reynolds number based on the leading edge radius for profiled sections. The role of

turbulence in the section induced drag problem is discussed. A theory of minimum section

induced drag is derived and applied. For low Reynolds number the minimum drag load

tends to the constant angle of attack solution and for high Reynolds number to an

approximation of the parabolic camber solution. The parabolic camber section induced

drag is about 4 percent greater than the ideal minimum at high Reynolds number. Two new

concepts, the viscous induced drag angle and the viscous induced separation potential are

introduced. The separation potential is calculated for three 2-D cases and for a 3-D

rectangular wing. The potential is calculated with input from a standard doublet lattice

wing code without recourse to any boundary layer calculations. Separation is indicated in

regions where it is observed experimentally. The classical induced drag is recovered in the

3-D high Reynolds number limit with an additional contribution that is Reynolds number

dependent. The 3-D viscous theory of minimum induced drag yields an equation for the

optimal spanwise and chordwise load distribution. The design of optimal wing tip

planforms and camber distributions is possible with the viscous 3-D wing theory.
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NOTATION

A

a, aexp

B

b

C

CD,CD

CDr_

aspect ratio, b2/S

profiled airfoil drag parameter, see (2.2.55-57)

vorticity stream function, see (3.1.8)

wing span

2-D airfoil chord or mean aerodynamic chord

drag-due-to-lift coefficient (2-D, 3-D)

minimum section drag coefficient

CL, CL

Dturb

El(z)

F(x), F(x,y)

f(x), f(x,y)

H(x)

K,E

KO

KD

Ke

KL

Kv

t(x), l(x, y)

L

L(y)

rN

P

qo,ql

R

Re

RN

lift coefficients (2-D & 3-D)

drag due to turbulent enstrophy, see (2.2.58)

see (2.2.39)

exponential integral, see (3.1.26)

universal minimum drag load, see (2.2.32) or (3.1.31)

camber shape

Heaviside step function

elliptic integrals of the lust and second kind

modified Bessel function

section induced drag kernel function, see (2.1.35) and Figure 2-3 or

(3.1.32) and Figure 3-2

viscous part of the 3-D induced drag kernel, see (3.1.24)

load kernel function, see (2.1.16) on Figure 2-2 or (3.1.20) and

Figure 3-11.

3-D kernel for separation potential, see (3.1.37) and (3.2.3).

load distributions

lift

span load distribution

nose radius of profiled airfoil

pressure

source strengths

Euclidean distance between two points

Reynolds number -- ref chord

Reynolds number-- ref nose radius
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S

T

U,V,W

U**

V

(x,y,z) or (_,_,_)

Xo(y),x (y)

planform area

Trefftz plane

Cartesian velocity component

free stream velocity

volume of all space

Cartesian coordinates

wing leading and trailing edges

or,or(x), ot(x,y)

ad

Otv

Aq)

A(pe

F _

'y

'Yx,'Yy

/.t,v

P

(Y

CO

angle of attack, negative slope of the camber shape

viscous induced drag angle, see (2.1.31)

separation potential, see (2.1.48) or (3.2.4), also Figure 2-12

and Figure 3-3.

delta function

doublet strength, see (3.1.39) or (3.3.19)

wake doublet strength or section load (3.3.44)

total circulation

circulation/unit length

3-D circulation components, see (3.2.6)

dynamic and kinematic viscosity

density

Reynolds number -- ref quarter chord

vorticity

V2

II

Ilvll
(q)

Laplace operator

denotes absolute value

integral of F over chord or planform

vector quantity q

viii



I. Introduction

The work reported herein is a direct outgrowth of two previous studies, Yates

(1980), and Yates and Donaldson (1986). The earlier work on 2-D viscous thin airfoil

theory (also see Yates 1982 for 3-D wing results) focused on the direct role of viscosity in

the generation of lift. The direct effect of the primary viscous boundary layer was taken out

of the lift problem by considering the surface to move tangentially at the speed calculated

with potential theory in its non-lifting attitude--the so-called "belt sander" model. We use

this concept throughout the present study. When the airfoil is placed at a small angle of

attack, the perturbation viscous boundary conditions induce an interactive vorticity field due

to the surface pressure gradients. This field of local vorticity is responsible for the lift via

the integral relation

L = pU.. f _dxdy (1.1)
$

where S is the 2-D region of flow outside the foil. The complete theory of the 2-D foil

including finite thickness and unsteady motion was documented in Yates (1980). A very

important feature of the viscous wing theory is that the load distribution is uniquely

determined without recourse to the empirical Kutta condition. Furthermore, the lift is

established by the action of viscosity over the entire wetted surface and not merely the local

region near the trailing edge. In this early study we calculated the lift as a function of

Reynolds number. For Re _ oo, the lift tends to the Kutta Joukowski value

cL = 27ro_ (1.2)

in accordance with earlier results of Shen and Crimi (1965) with corrections of order

(1-_-e). Further calculations for finite trailing edge thickness indicate a proportional

reduction of the lift. These and many other results were documented in our earlier work.

The effort summarized in Yates and Donaldson (1986) was concerned primarily

with the problem of drag-due-to-lift. An attempt was made to rationally assess various

proposed and functioning devices for reducing this important drag component. To provide

a consistent framework for this task, we revisited the theoretical foundations of the theory

of drag. Many known representations for the drag were rederived using the momentum

integral approach. By definition the drag can be expressed as the resultant of pressure and



viscousforceson thesurfaceor asamomentumflux integralin theTrefftz plane--all well-

known results. The difficulty with using either of theseformulas to attack the drag

assessmentproblem is that two many flow variablesare involved (velocity, pressure

viscousstress,etc.). At the insistenceof Donaldson,anall outeffort wasmadeto express

the drag in terms of a single flow property. The trick for achieving this goal was to

introducetheenergyequationinto theTrefftz planemomentumrepresentationof the drag

and then allow the Trefftz plane to recede to downstream infinity. This leads to a

relationship for the power, U** times the Drag, as the total viscous dissipation in the fluid

as required by thermodynamics. The crucial step was to show that in an incompressible

fluid the total dissipation can be rewritten as the global enstrophy or that

(1.3)

where IX is the viscosity and _ is the vorticity. This is an exact relation that contains all

components of drag by whatever engineering name we may give them. Since the lift can

also be expressed entirely in terms of vorticity,

L = pU,,. _ dS tOx "y , (1.4)

T

where COx is the streamwise component of vorticity and T is the Trefftz plane, we have

all components of the resultant force expressed in terms of vorticity alone. Many of the

results in Yates and Donaldson (1986) are a direct result of these important formulas. The

experimentally verified universal nature of the drag polar (e.g., see Rooney 1990) follows

at once from the respective linear and quadratic dependence of the lift and drag on vorticity.

Also, to the Authors knowledge, the dissipation or enstrophy formula for the drag is the

only form that shows unequivocally that the drag is positive or in the direction of the

external steady flow.

During the course of the 1986 effort, the Author wrote a technical memorandum

that outlined the development of a unified viscous approach to the theory of lift and drag

(Yates 1986). The above formulas (1.3) and (1.4) together with the earlier work on

viscous airfoil theory formed the core of the idea. We had seen that lift could be expressed

entirely in terms of the interactive vorticity without reference to the vorticity in the primary

2



boundarylayer - removed with the "belt sander" model. Even without the artiface of a

moving surface we observed that the vorticity on a symmetric airfoil section at zero lift has

odd parity (top to bottom) and thus integrates to zero under the spatial averaging operation

(1.1). The interactive vorticity associated with the lift has even parity and yields a finite

number upon integration. If we denote these two components symbolically by

_0 and _1 we can write in 3-D flow

a,= 0+O1

1012= IC ol2 + 2c3o • c31+ Iced2 (1.5)

But the product of an even and odd function is odd and thus integrates to zero. Thus

and

L=pU**Ids tOlxy
T

+ (1.6)

The drag-due-to-lift is given by the second integral in (1.6). The idea that evolved was to

use the interactive vorticity that we computed with the linear viscous theory in the quadratic

expression for the drag, and thereby calculate the drag-due-to-lift from first principles.

That is the primary subject of the present report.

In Section II, we develop the basic viscous theory of the thin 2-D airfoil and present

a collection of asymptotic and numerical results. The calculation of section drag-due-to-lift

and the minimum section drag load distribution is a significant new contribution to the

subject. A detailed derivation of the section drag of a flat plate at angle of attack is given-a

Reynolds number independent result that agrees with experiment. Also, a composite

formula for the Reynolds dependent drag of a profiled section is suggested and compared

with experimental data. Also, we introduce the concept of a viscous separation potential in

Section II that follows from an expanded interpretation of our earlier viscous theory of lift.

Preliminary examples indicate that this function could become a valuable design tool.

In Section III, we develop the viscous theory for the 3-D wing with asymptotic and

numerical results. The Reynolds dependent formula for drag-due-to-lift contains the

3



classicalinduceddragaswell asthesection drag-due-to-chordwiseload variations of the

2-D theory. The corresponding theory of minimum drag yields an integral equation for the

optimal chordwise and spanwise load distribution. The theory of the 3-D separation

potential for high Reynolds number deserves further development and application. A

preliminary example for the rectangular wing indicates a large potential for separation at the

wing tips as we might expect. Also, the theory indicates that more pointed wing tips have a

considerably reduced potential for separation.

In conclusion, we remark that many of the results in this report were fin'st outlined

at an AIAA sponsored workshop on drag in which the Author participated as an invited

lecturer (Yates 1990), under NASA Langley sponsorship. The AIAA notes should be used

in conjunction with the present document. The author found that considerable scientific

interest has been generated in the formula for drag (1.3). J. van der Vooren and J.W.

Slooff presented work on the compressible counterpart of our 1986 formula while J.D.

McLean presented detailed calculations of viscous drag that used the formula directly with

input provided by boundary layer theory (see AIAA Professional Studies Series 1990).

Earlier work of Greene (1988) on viscous induced drag was also discussed by Yates in the

AIAA notes. A recent comprehensive discussion of many aspects of the compressible

viscous theory may be found in Home et al. (1990). This important work was provided to

the author by Home just prior to the AIAA drag workshop but was not included in the

reference list.
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II. Complete Viscous Theory of the 2-D Thin Airfoil

2.1 Basic viscous theory

The complete viscous theory of the two-dimensional zero-thickness airfoil is

developed in detail. The theory is complete in the sense of Birkhoffs reversibility paradox:

Any reversible (inviscid) theory of fluid dynamics is either incomplete, over

determined or grossly incorrect, so far as its prediction of steady state lift

and drag are concerned.

Birkhoff (1955)

By including viscosity at the outset we obtain a well posed problem for lift and drag that

does not require auxiliary empirical conditions as does the inviscid theory. The theory of

lift follows closely the earlier work of Yates (1980). The complete and powerful theory of

section induced drag grew out of a study of Yates and Donaldson (1986). Part of this

work was included in a course on drag and lift for the AIAA (see Yates 1990). The theory

of the separation potential is completely new to the author's knowledge. For completeness,

we develop the 2-D theory from scratch herein even though the theory of lift was first

derived over a decade ago. Many of the ideas of the lift theory can be brought into much

sharper focus when considered along with the drag problem.

Consider a 2-D zero thickness airfoil of chord c fixed in a steady viscous

incompressible flow (U**, p) along the x-axis. We scale all lengths by the semi-chord

c/2, all velocities by U** and pressure by P U2. . The natural Reynolds number of the

problem is referred to the quarter chord:

o" = Uooc (2.1.1)
4v

where v is the kinematic viscosity. The problem is illustrated in Figure 2-1.



Freestream

-I

Y

C: y = f(x)

Figure 2-1. The 2.D airfoil problem.

The present theory is concerned solely with the prediction of lift and drag due to small

perturbations y =fix) of the surface C : y = 0 +; Ixt < 1. Following Yates (1980) we use

a "belt sander" model to remove the mean boundary layer on C. Suppose that the upper

and lower surfaces of C move at the free stream velocity. Then the exact viscous solution

of the flow past C is the trivial potential flow solution. When we perturb C to the state

y = f(x), the viscous problem for the perturbation velocity, pressure and vorticity

becomes,

(2.1.2)

6



with theviscousboundaryconditions

u=0 and v=f'(x)=-a(x) on y=0+ (2.1.3)

The homogeneous no-slip condition on the perturbation velocity follows from the use of

the belt sander model and distinguishes the present theory from the conventional Oseen

model (Shen and Crimi 1965, also Southwell and Squire 1933). By cross differentiating

the momentum equations in (2.1.2) we obtain a useful alternative formulation in terms of

pressure and vorticity:

with the boundary conditions

V2p = 0

&o= lv2ro
o_x 20.

oap 1 aro

o_x 20. c_

(2.1.4)

f"(x) + °_p - 1 _9co
"_ 20" _ on y = 0 + (2.1.5)

These are the physical boundary conditions that relate the production of the linear

interactive vorticity to gradients of the pressure that are driven by the geometric disturbance

fix). The vorticity formulation of the problem is fundamental since the lift and drag due to

the camber disturbance f(x) can both be expressed in terms of co; i.e.,

L

cL=  pu2c =-jr o aey
--oo

D 1 _¢o2dxdy-  prs c = (2.1.6)

The above relations are exact as are the linear boundary conditions (2.1.5). The lift is

proportional to the total vorticity or circulation that the foil can store--hence our

interpretation that an airfoil is a vorticity capacitor (Yates 1990). The drag is the global

integral of the square of the vorticity divided by the Reynolds number. For the present

linear problem this exact result yields the section drag-due-to-lift. The profile drag has

7



beenremovedvia thebelt sandermodel. Ourclaim to completenessof thepresenttheory

followsdirectly from thiselegantpositivedefiniterepresentationof thedragin termsof co.

Integral representations

The viscous perturbation problem can be recast as a problem for the single load

function

g(x) = p(x,O-) - p(x,O ÷)

The procedure is to use integral representations for p and co

fundamental solutions of (2.1.4). We have

with

p= 4 id_ qo(_)gnR

oY _ 1

03 1

¢.0= --_ _ d_ ql(_)ea(X-_)Ko(aR)
-1

R = [(x - _)2 + y_lS

(2.1.7)

that follow from the

(2.1.8)

(2.1.9)

where q0, ql are unknown distributions and K0 is the modified Bessel function

(Abramowitz and Stegun 1964). The representation of the velocity components (u,v)

follows from the momentum equations in (2.1.2) with the assumption that u,v vanish far

upstream. Thus

u=-p- ay

(2.1.10)

8



or with (2.1.8)

1 1

O3 _d_ qo(_)tnR 1 o3 id _ ql(_)ea(X__)Ko(crR )
U =----__I 2or Oy_l

V _

o3 1

-_x _ d_ qo( _)gn R ÷
-1

10 1

2or oax Id_ ql(_)ea(X-_)K°(crR)
-1

(2.1.11)

Now compute the limit of u,v for y --->0-Z-_and use the boundary conditions (2.1.3)

lr

lim u = -Y-tCqo(X)+ "" ql(x) = 0
y-_O:l: 2o"

=* ql(x) = 2crq0(x )
(2.1.12)

Also,

69 1

y-,,o±limv= --_ Id¢ qo(¢)[tn[x- ¢[+ e"(x- )go(oix- ¢l)]= f'(x)
-1

(2.1.13)

Finally, take the limit of p as y --->0-& and use (2.1.7) to get

limp = +ff,qo(X) =_ qo(X)= _ "_Pt.,x......_,
y...,o± 21r

(2.1.14)

Thus, we obtain an integral equation for the load function,

with

1

1 _a_ t(_)Kt.(x-_)=a(x)=-f'(x)
2_

-1

KL(X):_x[gnlxl+e°'XKo(OJxl) ]

(2.1.15)

(2.1.16)

The last result may be found in Yates (1980). The kernel function KL of the load equation

is an essential element of the viscous theory. It is plotted in Figure 2-2 versus the

Reynolds scale X = ox and compared with the Cauchy singular inviscid result. No matter



how large the Reynolds number t_, the logarithmic singularity of KL is retained along

with a more persistent downstream influence than upstream. This behavior is the reason

for uniqueness of the viscous loads problem with a tendency to non-singular trailing edge

behavior of the load in the high _ limit.

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

! I i i I

Viscous
',Inviscid

-0.8

"1 I I I

-8 0 2 4 6 8

X - Reynolds scale

Figure 2.2. Comparison of the viscous and inviscid
load kernel functions, KL.

With the solution of (2.1.15), the velocity, pressure and vorticity are given by the

following integrals:

10



1

u = 2_ Oy -1

1

1v= 2_o_ x
-1

1

1 O fdel({)gnR
P = 21r Oy -1

1

°° Ito = d_ l( _)ea(X-_)Ko( eR) (2.1.17)
trBx

-1

Section lift

Next we use the above formula for co in the integral expression for the lift (2.1.6).

First we derive an intermediate result for the circulation per unit length. Define

y(x) = - f dy ¢o(x,y)

_ C_ I oo

= ---- f de g(e)ea(X-_) f dy Ko(aR)
gOx

-1 -_,

(2.1.18)

or using the known integral (Erdelyi 1954)

we obtain

j dy Ko(O(x2+y2)_)=-_e°]X' (2.1.19)

0 1

r(x) = _ _de t(¢)e =(x-_-lx-¢l)
-I

(2.1.20)

The section lift coefficient is given by

11



1

= _dx l(x)
-1

(2.1.21)

We further observe with (2.1.20) that

1

y(x) = 2ere 2°'x I d_ g(_)e -2°'_

-1

=0

X <-1

X>I
(2.1.22)

The circulation decays exponentially on the scale of ¢_ upstream of the leading edge and is

exactly zero downstream of the trailing edge. All of the vorticity that makes up the

circulation T or the total circulation F is confined to the immediate neighborhood of the

foil. This remarkable result is equally valid at high lift as is the general formula for lift

(2.1.6). It is the viscous counterpart of the Kutta-Joukowski theorem. The ability of any

foil configuration to develop lift is one and the same as its ability to store vorticity in the

near field--hence our interpretation (Yates 1990) of an airfoil as a vorticity capacitor. We

hasten to point out however, that the stored vorticity is continuously replenished via the

steady state transport process in (2.1.4) and the production process in (2.1.5). At high

angle of attack, these processes will in general become unstable with intermittent vortex

shedding.

Section induced drag

The viscous formula (2.1.6) for the section induced drag is a very important new

result that enables us to complete the theory of the viscous thin airfoil. With (2.1.6) and

the integral representation of the vorticity (2.1.17) we can derive a useful practical formula

for the section induced drag in terms of the load g(x). We substitute (2.1.17) into (2.1.6)

and carry out the integration over the infinite domain. Thus

1 1
o"

co=27 t(¢)Id, z
-I -I

(2.1.23)

with

12



0 2

z = _ _ e_ e_(_-_+_-_)Ko(;_)Ko (_) (2.1.24)

where the subscripts (_,rl) on R = (x2+y2) 1/2 means that x is to be replaced by x -

or x - 11 respectively. The integration in (2.1.24) is completed as follows.

First consider the integral

0= f_****dy K0[o'(a 2 + y2)_]KoI_(b2 + y2)_] (2.1.25)

Replace the second Bessel argument by its Fourier cosine representation (Erdelyi 1954)

K0[o.(b 2 +y2)1/2] =Sdt cosyt

0

exp[_JbJ(t2 + 0-2)Y2]

(t2+ _ )Y2
(2.1.26)

then derive the Parseval relation for _;

0 = *fdt exp[-Ibl(t2 + °'2)U2] 7dycosytKo(_,(a 2 + y2)_)

(/2 + 0.2)_ ?._

OCP

_h-0(= -- t)dt (2.1.27)
O"

o'(lal+lbl)

Thus, the function X can be written as

03 2 oo no

Z= 03¢03---"'_1_clx etr(x-_+x-rt)'_a f Ko(t)dt (2.1.28)

-** ,_(Ix__l+lx_,ll)

or integrate by parts with respect to x to get

Z- 2tr 03¢030_ dx [sgn(x-¢)+ sgn(x- ,)Je_(Zx-¢-n)go(_lx-¢l+lx_ 171))(2.1.29)
O0

13



Now we observe that Z(_,rl) is symmetric with respect to an interchange of (_,_). Thus

we assume without loss of generality that _ > r I for the moment. Then

=02 n

5**

02 **
4 _dx ea(2x-_-O)Ko(cr(2x-¢ - 7"1))

a O_arl

nr a 2 _ dt K 0 (t) sinh t

o 0400

no

= _ _-_[K0(oJ¢- rTI)sinh_ ¢- 7/)] (2.1.30)

which is valid for all _ and "q . Finally, we use (2.1.23) with the change of notation

(_,rl) ---) (x,_) to obtain the final expression for the section induced drag

1

cD = fdx g.(x)Otd(X )

-1

1 1

ad(X) =-_--_ _ d¢ g(¢)_[Ko(c_x- ¢l)sinh (r(x- ¢) ]
-1

(2.1.31)

where we interpret _d(X) as the viscous induced drag angle. It plays a role in the 2-D

theory much like the induced angle of attack that is familiar in 3-D lifting line theory.

Numerical examples of O_d are presented in Section 2.3. The section drag is obviously

quadratic in the section lift and is a function of Reynolds number c. There is no

counterpart of this important result in the familiar inviscid formulation of the 2-D airfoil

problem where the section drag is exactly zero. We make extensive use of this formula in

the subsequent analysis.

Minimum section induced drag

With an explicit positive definite expression for the section drag-due-to-lift we

can pose a variational problem for the minimum drag--a problem that is quite familiar in
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3-D wing theorybut heretoforenon-existentin the 2-D theory. We seeka minimum of
(2.1.31)with theconstraint(2.1.21)on thetotal lift. Considerthefunctional

1

J[l] = DIll- _[ _ dx !- CL]
-1

(2.1.32)

where X is a Lagrange multiplier. Now require J to be a minimum with respect to l(x)

and X,

OJ
(i/=0 and --=0 (2.1.33)

dJL

The variation of J yields the Euler equation for l[,

l

(2.1.34)

with

Ko(x)= (Ko(Olxl) i.h (2.1.35)

The constraint on 1[ is,

1

_ t(x)dx = cc (2.1.36)
-1

and the minimum drag is obtained with (2.1.31) and (2.1.34),

cL_____g
co = (2.1.37)

2

Since it is redundant to retain both 2L and CL, we define the universal load function F(x)

with

15



l(x) = _F(x) (2.1.38)

Then F(x) is the solution of

1
1

_d_ F(¢)KD(x-_)= 1
-1

(2.1.39)

and

or

= 2c L / _ F(x)dx

-1

1

Co=C 2 [ _F(x)dx
-1

1

dCD -1 _ F(x)dx
d_CL- 1-1

(2.1.40)

(2.1.41)

(2.1.42)

1

t(x) = eL. F(x) / JF(x) dx

-1

(2.1.43)

An immediate result is evident if we compare the equation (2.1.39) for the

minimum drag load with the induced drag angle in (2.1.31). The condition for minimum

section drag is that the viscous induced drag angle be constant over the chord. Recall that

this is also the condition for a minimum of the classical 3-D wing induced drag. The

uniqueness of solution of the minimum drag equation (2.1.39) follows from the

logarithmic behavior of the drag kernel KD near the origin. This kernel is plotted versus

the Reynolds scale X = ax in Figure 2-3.
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Figure 2-3. Section induced drag kernel, KD.

The camber shape and local angle of attack that produce the minimum drag load

distribution are obtained with (2.1.15),

with

and

1

f (x) = -_ ! d_G( _)[ enlx- ¢ + e'_<"-')Ko( _X - :l)]

1

G(x) = F(x) / J F(x) dx

-1

(2.1.44)

(2.1.45)

rff
a(x) = --" (2.1.46)

dx

The theory of minimum induced section drag has become a theory of the optimal load

distribution. Our original viscous theory of the load distribution has become a theory of the

17



optimal camber shape. Recall that the classical theory of minimum induced drag of 3-D

wings does not provide any information about the chordwise load distribution or shape.

The above analysis is an important step in the direction of a true 3-D wing design code.

Detailed calculations are presented in Section 2.3.

The separation potential

Since we have removed the primary boundary layer from the formulation of the

viscous perturbation problem, it may seem pointless to discuss separation. However, the

theory of the load function in (2.1.15) and (2.1.16) suggests an interesting approach to the

problem. We write (2.1.15) in the form

t(g) _ a(x)+a,,(x) (2.1.47)

with

tXv(X):- 2--_d¢ t(_) ea(X-¢)Ko(otx-@ (2.1.48)
-1

The function (_v(X) is a viscous load induced angle of attack or when multiplied by the

free stream velocity it is a viscous load induced blowing velocity. We suppose that the real

boundary layer that we removed must respond to this velocity. We show below with

several examples that (Xv increases from leading edge to trailing edge where it becomes

singular. For the class of load functions t0(x) that solve the corresponding inviscid

problem

(2.1.49)

the least singular O:v(X) is obtained when l0 satisfies the Kutta condition at the trailing

edge. This suggests that av(X) may be used as an indicator of the potential for separation.

We explore this idea in more detail in subsequent sections.

18



2.2 Asymptotic analysis

In this section we examine the viscous theory more closely in the extreme limits of

small and large quarter chord Reynolds number o. The analysis is of interest for several

reasons. First we will show that the theory of the load function and the minimum drag load

function is unique--an essential feature of any "complete" theory. Second, we gain further

insight into the meaning of the separation potential.

Low Reynolds number o << 1

Consider the solution of the load equation (2.1.15) with the kernel function

(2.1.16) when cr tends to zero. For Ixl bounded, we first expand the kernel. For

fflxl << 1, we have

K L(x)= _[gn Ix[+ e_Ko(Olx]) ]

o ;=- gn I I+gn--+y+l +O(dxgno_xl)
2

(2.2.1)

where "_ is Euler's constant (= 0.5772). The integral equation for the load becomes

1 C ]_or. f d_ g(_) gn Ix- _l+ gn ¢y + y + 1 : a(x) (2.2.2)
2_ 2

-1

Within the class of load functions that admit a square root singularity at the leading and

trailing edge, the last equation has a unique solution. This is a general feature of integral

equations of the type (2.2.2) that have a log singular kernel function (e.g. see, Carrier,

Krook and Pearson 1966). Since we know (see Fig. 2-2) that the logarithmic singularity is

retained at all Reynolds numbers, we conclude that the solution of the load equation is

unique for all o. For the same reason, the solution of the minimum drag loads problem is

unique.

We now demonstrate the solution of (2.2.2) for the special case of constant angle of

attack. For then we can differentiate (2.2.2) to get

19



2g j x_-'_ =0
-1

(2.2.3)

which has the eigensolution

C
t(x) =

_1 -x 2
(2.2.4)

Then substitute l(x) into (2.2.2) with or(x) = ot to get

and

C_

t(x) =

2ot

o-(tn 4/o'- y- 1) 41- x 2

2g ot

cL= a(tn g/o'- r-1)

(2.2.5)

(2.2.6)

The slope of the lift curve in low Reynolds number Stokes flow becomes infinite; i.e.,

(1 /dot o-(gn 4/ o" - y -1) =0 o" ln 4/ o"
(2.2.7)

We turn now to the minimum drag problem at low Reynolds number. First expand

the drag kernel function KD in (2.1.35) to get

Ko(x) = -_(Ko(olx[) sinh o'x)

o( o )=- lnlx[+ ln--+ y + l
2

(2.2.9)

which is identical to the low Reynolds number approximation of (2.2.1). Thus the

universal minimum drag load function becomes
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2 1
F(x)=

and

t(x) =

or(In 4/a- 7"- 1) 41- x 2

Ct.

/r_/1 - x 2

1

dCD 1

-I

dtn4 )2trk _- 'y- 1

(2.2.10)

(2.2.11)

(2.2.12)

As we noted above, the minimum section drag problem has a unique solution since the

kernel function KD(X) has a logarithmic singularity. The induced drag number dc D / dc_

tends to zero in the low Reynolds number limit. We will show presently that this number

is a maximum for a_= 1. The minimum drag camber shape is the constant angle of attack

given by (2.2.12),which tends to zero as t_ ---) 0 for fixed CL. This is an example of

two theorems that Batchelor (1967) attributes to Helmholtz:*

° There cannot be more than one solution for the velocity distribution

for flow in a given region with negligible inertia forces and consistent

with prescribed values of the velocity vector at the boundary of the

region, (including a hypothetical boundary at infinity when the fluid is

of infinite extenO.

. Flow with negligible inertia forces has a smaller total dissipation than

any other incompressible flow on the same region with the same

values of the velocity vector everywhere on the boundary of the

region.

Helmholtz 1868

(see Batchelor 1967)

*This author has tried unsuccessfully to obtain an extension of the second principle to higher Reynolds
number via an enstrophy principle, (see Yates 1983).
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High Reynolds number, _ >> 1

The motivation and objective of the viscous theory is to obtain useful and practical

results at high Reynolds number. By using the belt sander model we have formally

removed any real Reynolds number associated with the primary boundary layer from the

problem, (e.g., 5" or 0), even though a is one fourth of the usual chord Reynolds

number. In the language of triple deck theory, (e.g. see Melnik (1978) or Brown &

Stewartson (1970)), we have eliminated the middle deck in order to get at the inherent

physics of the viscous origin of lift and section induced drag. Refinements that include

Reynolds number effects of the middle deck and even geometric thickness can be

considered later.

First we write (2.1.15) in the form

1

t)x 21r _ d_a 1 t(_)[/n Ix -_1 + etr(x-_)Ko(_ x - ¢1)]
-1

= a(x) (2.2.13)

and note that the contribution of the region Ix - _1 < _,/_ to the integral is small when

1 << _. << tr. Thus, we can replace the Bessel function with its asymptotic expansion;

i.e.,

e_Ko(_xl) -_-[
_2_xl

= _/_--_- x > ;t/a

= 0 x < ;_/a
(2.2.14)

and so for e = X/t_ --> 0, we get

_._! l(_) 1 t9 !d l(_)
for ff>>l (2.2.15)
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where the first integral is a Cauchy principle value integral. The second term is the

derivative of the Abel transform of the load. From the formulas (2.1.47) and (2.1.48) we

recognize the second term as the viscous induced angle of attack; i.e.,

and

1 o_ _-, l(_)
1

1 1 g(_)
- a(x) + av(x)

(2.2.16)

(2.2.17)

Constant alpha separation potential

Our fast use of av(X) is to derive the asymptotic solution of (2.2.17) regarding

av as an error term for the corresponding inviscid problem

(2.2.18)

where for this example we assume ct = constant. The solution of (2.2.18) is

t(x)=l (cL -2nax)
/1:_ 41--X 2

(2.2.19)

where CL is arbitrary. But with the viscous equation we can compute the error due to

t(x). Thus,

O_V -- 1 0 id t(_)2 242424 ax_ 

1 d i d_ (CL-2_rot _ (2.2.20)

This error angle can be evaluated explicitly (see Appendix A). We have
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with

a,,(x) = 8_t_-_k2 [(CL - 2rc°t)( l_-_k - K) +41rOt(E-K)]

k=? +x2 (2.2.21)

where e(k) and K(k)

unless

are the standard elliptic integrals. For x _ 1, Cry is of order

1
(2.2.22)

cL = 2ga (2.2.23)

in which case we obtain the much smaller logarithmic error.

cL (r-e 
av (x) - 47r.x/-_-_ L_)

=o(-t._I1-x!)
L ) for x ---) 1 (2.2.24)

We recognize (2.2.23) as the solution of the inviscid problem with the auxiliary empirical

statement of the Kutta condition. In a formal sense, we have derived the Kutta condition

via the high Reynolds number viscous theory, a result first obtained by Shen and CMmi

(1965) within the context of Oseen theory.

Physically, the last result is much deeper than a simple empirical statement about the

nature of the trailing edge flow. In Figure 2-4, we plot the normalized separation potential

Cry/CL for various values of CL . The reduced trailing edge singularity for
27ra

CL = 1 is clearly evident. It is important to note the monotonic growth from the
27rot

leading edge to trailing edge where it is a maximum. This is our f'trst example of the

separation potential. The response of the upper surface primary boundary layer to this

viscous blowing excitation will lead to separation at some distance from the trailing edge

and this distance will increase with increased angle of attack. With repeated application of
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the linear viscous theory and boundary layer analysis we could in principle develop a

rational theory of high lift and stall.
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Figure 2-4. Separation potential and uniqueness of the load problem.

Parabolic camber separation potential

Another example of the separation potential is easily derived for the elliptic load

distribution

t(X)-- 2cL l_"X-- X 2 (2.2.25)

7r

and corresponding parabolic camber distribution
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a(x)=_. _ --

CL
"--_°X (2.2.26)

The separation potential is given by

c,
-1

(2.2.27)

which again can be evaluated in terms of elliptic integrals (Appendix A). Thus for

parabolic camber

CL
Otv (x) = _ (K - 2E)

7r-q/rcr
(2.2.28)

which we may compare with (2.2.24) for constant angle of attack. For x --_ 1, we have

CL
av (x) ---

4 _4-_
and

K a = constant

CL
av(x) -= n_r_-_ K parabolic camber (2.2.29)

The trailing edge singularity in the parabolic camber potential is of the same logarithmic

order but 4 times greater. Near the leading edge, x _ -1, we have

a = constant

(2.2.30)
parabolic camber

We interpret the negative value of av as an indication of separation on the compression

side of the leading edge. For the same lift coefficient and Reynolds number, the potential

for separation of the parabolic cambered foil is 3 to 4 times greater than that of the foil at

constant angle of attack. In Section 2.3 we consider a third example of the separation

potential for the flapped airfoil which we compare with the above results. The extension of
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theseparationpotential concept to 3-D wings in Section III has the possibility of becoming

a very useful design tool.

Minimum section drag

We turn now to the high Reynolds number approximation of the minimum section

induced drag problem in Section 2.1. First, we introduce the asymptotic approximation of

the drag kernel given by (2.1.35),

KD(X) = _ Ko( olxl) sinh o'x

3 1 _2._ sgn x-=0x2
for Ixl*0 and o" >> 1 (2.2.31)

Use (2.2.31) in (2.1.39) to get

1 _9 de F(_) d_ F(_) ]

4 2"V_--_--_oax _/_:_ .__ii__ j = 1
(2.2.32)

Now let

224Y_
F(x) - i G(x)

1[
(2.2.33)

in which case G is the solution of the universal equation

1 0
2g Bx _.-_ - jub = 1

(2.2.34)

with the minimum section drag coefficient

2_ 11 7r _G(x)dxclco = -2dTz /-1

and the minimum drag load function

(2.2.35)
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1
g(x) = cL G(x) / _ G(x)dx (2.2.36)

-1

and the Reynolds number independent camber shape

1 1

- c--L--L_d_ G(_)tnlx- ¢1/_ G(¢)d_ (2.2.37)f(x)= 2_
-1 -1

We compute the solution of (2.2.34) in the following section. It is evident from (2.2.35)

that the minimum section induced drag is O(1 / -_/'_).

Flat plate section drag

We now compute the section induced drag in the high Reynolds number limit for

the flat plate foil at angle of attack. The load function is

and the section drag coefficient of interest is

2_c o 1 i __l-X 1 1-_e= +x
-1 -1

with

and o >> 1.

to obtain

K (o_x D = _x (K° ( °]xD sinh o'x)

First introduce the transformation

(2.2.38)

(2.2.39)

(2.2.40)

x = -cos20 _ = -cos2cp (2.2.41)

x/2 tr/2 K(2_ c°s2 0- c°s2 ¢p)16 _ d0cos z 0 f dcpcos 2 _p

0 0

(2.2.42)
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Nextrotateandstretchthecoordinates(0, cp)---)(s,t) with

s-t s+t
0=_ _o=--

2 2
(2.2.43)

Also note the symmetry in s,t to get

z/2 s

8 _ds_dt(cos2s+cos2t)K(2crsinssint)

o o

(2.2.44)

Now use (2.2.40) and integrate by parts with respect to t. With the change of variables

we obtain finally

v = 2o-sin2s (2.2.45)

/_ =1- 4 _ dVKo(_:)sinhv

4 z/2S_ds_dt (sin2s- sin2t) sin t Ko(2_sinssint)sinh(2crsinssint)+--
cos2t •sin s

0 0

(2.2.46)

where we have used the definite integral,

47___2/ d'rKo (v) sinh "r= 1
g o _a

(2.2.47)

For a >> 1, the Bessel function can be replaced with its asymptotic expansion in (2.2.46)

in which case we find

and

CD ----
2z

(2.2.48)

for cr _ o. (2.2.49)
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This is the experimentally verified result for the sectioninduceddrag of a flat plate foil

(Hoerner1965,p. 7-3). We havederived this well-known Reynoldsnumber independent

resultwith acompleteviscoustheory. Theapproachto this limit is calculatednumericallyin
Section2.3.

Profiled airfoil section drag

The present theory was derived formally for a zero thickness foil. When the Reynolds

number is large the load distribution becomes identical to the classical inviscid distribution

obtained with the Kutta condition and we have shown that the section drag can be obtained by

tilting the resultant lift by the geometric angle of attack. Another point of view is that we have

given up all "leading edge suction" a finite force that acts at the point leading edge in the limit of

the classical inviscid theory as the thickness tends to zero It is natural to ask whether the

present theory can yield any useful information about the nature of the leading edge suction

force for a profiled leading edge. To investigate this question we consider the load function

t(x) = cL 4-(-S-x2
2n: 1 + x + e (2.2.50)

where e is the foil nose radius referenced to the foil chord. This load exhibits the usual peak

near the leading edge but is otherwise regular. Following the above asymptotic analysis for the

zero thickness case we obtain the following expression for the section drag

c_ 4S 1

c° = 2"-_" _ zr_ _ (2.2.51)

with
!

T<x, +<1+,l+x2<l 2

S=idxx2(l+2x2)T(x)=0.3366
o

(2.2.52)

Def'me the Reynolds number based on the nose radius
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Then

R N = U**rN =4 U_c rN =4cre
o 4v c

CD
_ c2 8S 1

_ c2 0.342

-2n:

(2.2.53)

(2.2.54)

which indicates that the section induced drag scales with the reciprocal square root of the

Reynolds number based on the nose radius.

The form of (2.2.54) and the limiting form of (2.2.49) suggest the composite

asymptotic relation

2 1ct.
co (2.2.55)

2n: 1 + a._-u-u

where the constant a is determined from (2.2.54) to be

a = 1/.342 ___-3 (2.2.56)

From data for the roughened NACA 0006, 0009 and 00012 (Abbott and von Doenhoff

1958) we infer the experimental value

a=,p _=_0.25 (2.2.57)

or 1/12 the theoretical value. The two composite relations are plotted in Figure 2-5. The

composite section drag relation obtained with the linear viscous theory is about an order of

magnitude smaller than the experimental value for practical airfoil sections. In fact it is

comparable in magnitude to the section drag in the so-called laminar flow bucket (see data in

Appendix IV of Abbott and von Doenhoff). The missing element of the theory is the presence

of turbulent flow over the section or the turbulent enstrophy

(2.2.58)
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where _' is theturbulentcomponentof the vorticity. The very smooth quadratic variation of

the section drag with the section lift suggests that the turbulent vorticity scales directly with the

section CL so that the general form of our composite relation seems quite plausible. The

parameter a simply undergoes a transition at some value of CL or some value of RN in

Figure 2-5. The theoretical curve may be considered a lower bound on the section induced

drag if laminar flow can be maintained over most of the section. This is an area of intensive

current research (see Holmes 1990).

100

t'q
<

10 1

=
o 10.2

Flat plate limit = 0.159

_ Exoerimental

\Theoretical \

\

I I I I I I10-3
10 4 10-3 10-2 10-1 10 0 101 10 2 10 3 104

Rn - Reynolds number (nose radius)

Figure 2-5. Theoretical (laminar) and experimental (turbulent) section induced
drag for profiled airfoil sections.
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Parabolic camber section drag

For any load distribution that is not singular at the leading edge or trailing edge the high

Reynolds number section drag can be computed with (2.1.31) where we can replace the kernel

with the asymptotic approximation (2.2.31). The formula is

1 1 _ sgn(x-_)

co : 4 2____._ _!dxl'(x)'_d¢l(¢)-i 4[x-_[
(2.2.59)

where the derivative l'(x) may be singular. To illustrate this formula we compute the section

drag due to the eUiptic load distribution

g(x) = 2c--kLl_---x-x: (2.2.60)

that corresponds to parabolic camber. Break up the integral in (2.2.59) into 2 parts x < _ and

x > _ and interchange the order of integration to get

ct. d_ dx
CD -- lg2_ x Id x x .] (2.2.61)

_/(1- xZ)(x- ¢) _, _/(1-x2)(¢ - x)

In the f'mst integral we let

x = 1 - 2_ 2 sin2q_ O< q_ < zr/2

/q = _ (2.2.62)

and in the second integral

Then

x = 1 - 2k22 sin2_p O< ¢p < zr/2

k2 = _ (2.2.63)

2CL2 1

co=
-1

(2.2.64)
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Finallyset

toobtain

= cos2tp (2.2.65)

CD
16C2L n/2

= ff5/2 _ f d_psin2tp cos 2_p[2E(sin cp)- K(sin tp)]
0

= 0.1313 C2L/-V/-_ parabolic camber (2.2.66)

In section 2.3 we show by numerical calculation that the ideal minimum section drag is

COmi n =0.1268 CL2/'q_ (2.2.67)

The result for parabolic camber is only about 4 percent greater than the ideal. The load and

camber distributions are compared in Section 2.3.

2.3 Numerical examples

The basic algorithm

To calculate the solution of the load equation (2.1.15), the universal minimum drag

load equation (2.1.39) or its high o asymptotic approximation (2.2.34), we are faced with the

need to approximate the integral

1 1

C(x)= -_ fd¢ l(¢) _xx F(x-¢)
-1

(2.3.1)

Also, C(x) is needed to evaluate the section induced drag (2.1.31). The function F(x) for

the various cases is defined as follows:
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F(x)= tnlxl+ e_Ko(O_x])

= K0(o_xl)sinh o'x

load equation (2.1.15)

universal load equation (2.1.39) or the
section induced drag (2.1.31)

sgn x asymptotic universal load (2.2.34) or

section drag (2.2.59)
(2.3.2)

To approximate the integral for all cases we consider t(x)

+ where xn is a control point for each interval. Thenx_ to x n

to be constant over intervals

+
N Xn

x [t,_de_ F(xc(_)- _ Z - g)
t/=l Xn

N

'
2_r n=l

(2.3.3)

Next we evaluate C(x) at control points Xm to get

N

C(xm) = _,_Kmn tn
n=l

with

(2.3.4)

(2.3.5)

The control points and break points are chosen according to the cosine distribution

X = --COS 0 (2.3.6)

with equal spacing on e. We have

On =(n-1/2)rrlN,

X n = --COS On,

0 + = 0 n + zr / 2N

+
x n = -cos (On + _ 12N)

(2.3.7)
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Thediscretekernelsfor thevariousproblemsof interest are summarized below:

Load equation (2.1.15)

N

EKLmnln=O_m

n=l

m=l .... ,N

K_ =l [tnlX,n-x=l ,_(x.,-xd).. ,J _xgD_e_(Xm-X+_)Ko(_x.'2_ L Ixm x]l +e ltotCqXm -X+[)]

N

_ t n sin On
CL = N" n=l

(2.3.8)

High (7 approximation (2.2.15)

(2.3.9)

Universal load equation (2.1.39)

N

_._KDFn=I
n=l (2.3.10)

K D = -_ [K0 (_Xm-griD sinh cr(x m - Xn)- Ko(_Xm-x+ I)sinh (x m - x + )]

Also

1 N

= _,F.sir, O.IIFII= J"F(x)dx = -_
-1 n=l

(2.3.10)

so that
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co=cZ/ II_II
t_=ctFn/llell

N

an = _ n=l
(2.3.11)

where K_ is given by (2.3.8).

High O approximation (2.2.34)

N
~D

KmnGn = 1
n=l

1 Isgn(Xm--Xn)_

N
a

II_II= N_ nsinOn

1_ c_/IIGII
CD =_

l

tn=cL.an/ IIGII
N

an = IIGIIn=x

with K L given by (2.3.9).

Section induced drag (2.1.31)

D
The inner kernel in (2.1.31) is precisely K,,m. Thus

/17C2 N N

= m_l OmKmnln
_tm sin D

co glltll2 = n=l

N

II/_= N '_ t n sin On
n=l

(2.3.12)

(2.3.14)

(2.3.15)

(2.3.16)
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High ¢r approximation (l regular)

If the load is regular at the leading and trailing edges we can use the asymptotic

approximation of K o in (2.3.14) to get,

7[C2L N N

Co - -2Nlltll2 _ _ t,_ sin Omf_Dmnln
m=l n=l

(2.3.17)

-O given by (2.3.13).with Kr, tn

All of the following numerical results were obtained with the above algorithm, except

for the load and separation potential of the airfoil with flap. The modifications needed to

handle the log singularity are discussed in Appendix A.

Constant Angle of Attack

The load distribution t(x) and the induced drag angle Otd(X) axe plotted in Figures 2-

6a and b for _ = [.001, .1, 1.0, 10, 10000]. The load evolves from the low Reynolds

number asymptotic form (see (2.2.5)) to the high Reynolds number form (see (2.2.19)) with

the Kutta condition (CL = 2na). The induced drag angle ad(X) tends to a constant at low

Reynolds number which indicates that the low Reynolds number section induced drag is locally

proportional to the load. At high Reynolds number the induced drag angle becomes more and

more concentrated near the leading edge. This reinforces our asymptotic result (see (2.2.48))

for the flat plate section drag, where we showed that the leading edge was the dominant

viscous contribution. Also, see the summary results in Figure 2-9 below.

Parabolic camber

The load distribution and the induced drag angle for parabolic camber are plotted in

Figures 2-7a and b. At low Reynolds number, the load tends to a nearly non-lifting form with

fore and aft anti-symmetry, compared to the highly lifting angle of attack case. At high

Reynolds number we again recover the elliptic load distribution that is obtained with inviscid

theory and the Kutta condition. The induced drag angle is nearly linear over the section at low

Reynolds number and virtually constant (nearly zero in Figure 2-7b) at high Reynolds number.
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Figure 2-6a. Load distributions: Constant ¢t; a = [0.001 to 10000].
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Figure 2-6b. Induced drag angle: Constant ¢t; a = [0.1 to 10000].
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Figure 2-8b. Camber slope: Minimum drag; a = [0.01 to 10000].
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We will see below that the high Reynolds number results for parabolic camber are very close to

those for the minimum drag solution.

Minimum drag solution

The load distribution and the local angle of attack or negative slope of the camber shape

are plotted in Figures 2-8a and b. The section induced drag angle at minimum drag is a

constant for any Reynolds number as we discussed in the derivation of these solutions. This

important result is analogous to the 3-D minimum drag result wherein the downwash or

induced angle of attack is constant across the span. The load distribution at minimum drag and

--->0 is identical to the solution for constant angle of attack. From Figure 2-8b we see that

o_ = constant is the low Reynolds number camber shape in accordance with Batchelors theorem

(see page 21). At high Reynolds number, the minimum drag solution tends to a more elliptic

load distribution with a shape that has logarithmic cusps at the leading and trailing edge.
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Figure 2-9,

X

Comparison of minimum drag and parabolic camber loads and

shape for very high Reynolds number a.
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We compare the minimum drag solution with the parabolic solution in Figure 2-9.

These results were computed with the asymptotic formulation of the minimum drag problem

(see (2.3.12) through (2.3.14)). The minimum drag shape has a steeper slope at the leading

and trailing edges than the parabolic camber shape. The load distribution is also more

concentrated at the edges. The limiting values of the section induced drag parameter

cD / c2 are 0.1268 and 0.1313 respectively for the minimum drag and parabolic camber

configurations---about a 4 percent difference.

Lift and drag summary

We summarize the results for all three of the above configurations in Figures 2-10a and

b over the Reynolds number range o = 10 -3 to 104. Each configuration amplitude (alpha or

the camber height) is set to yield a unit section lift coefficient for o --, o.. The constant alpha

lift coefficient is singular for o ---, 0 in accordance with our asymptotic result (2.2.7). For

parabolic camber it tends to a constant (= 2.0). The ideal section lift is unity over the full

range of Reynolds number. The section induced drag for constant alpha tends asymptotically

to the ideal minimum drag for o --_ 0 and to the flat plate limiting value (1/2r_ = 0.159) for

o _ **. For parabolic camber the section induced drag becomes infinite at low Reynolds

number and tends asymptotically to zero as 0.1313/.¢r-_ for high Reynolds number which is

approximately 4 percent greater than the high Reynolds number minimum induced drag

(.1268/-_t-_). A curious feature of the minimum drag curve is that the section induced drag,

cd / c2 is a maximum for g = 1.0.

2-D Separation potentials (¢y--_ 0.)

We conclude our presentation of 2-D numerical results with a comparison of the

separation potentials for three camber configurations:

1. Angle of attack (9 degree)

2. Parabolic camber (8% chord)

3. Flap foil (20% chord at 16 degrees)

All configurations are for a section ¢L = 1.0. The inviscid load distributions with Kutta

condition are plotted in Figure 2-11 for convenient reference.
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Figure 2-11. Inviscid (Kutta) load distributions for constant angle of attack,
parabolic camber and 20% chord flap.

The normalized viscous induced camber, _ fv, and the normalized separation

potential, _ t_v, in Figures 2-12a and b are calculated with the high Reynolds number

numerical approach outlined in Appendix A. The results for angle of attack and parabolic

camber are identical to results obtained with the analytic formulas (2.2.24) and (2.2.28).

While the viscous induced camber shape indicates a separation problem at the flap hinge line

the best overall indicator is the separation potential in Figure 2-12b. For case 1, constant angle

of attack, the potential is positive over the entire chord with a logarithmically infinite value near

the trailing edge. A very careful asymptotic analysis of the leading edge region for case 1 (not

included herein) indicates an exponentially small region where _ a v is singular and

positive, ff we interpret a positive value as an indication of separation on the suction side and a

negative value as an indication for separation on the compression side, case one is most

susceptible to separation on the suction side near the trailing edge and near the leading edge.
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Therelativelysmallvalueat _ a v over most of the section may indicate reattachment of the

familiar leading edge separation bubble.

The parabolic camber shape is susceptible to separation on the compression side of the

leading edge and on the suction side near the trailing edge. Also, the trailing edge has a

logarithmically singular separation potential and is probably more susceptible than the leading

edge. For the same lift coefficient, separation on the parabolic shape would occur before that

on the constant alpha case.

The results for a foil section with flap are particularly interesting. The potential for

separation near the leading edge is small but shifts to the compression side compared to the

constant angle of attack case. Near the hinge line separation is indicated on the suction side

downstream of the hinge line and on the compression side upstream of the hinge line. The

trailing edge again exhibits the usual logarithmically singular potential for separation. We point

out that these results are for a flap setting of 16 degrees which according to inviscid theory with

Kutta would yield a unit lift coefficient. The strong indication and likely occurrence of

separation near the hinge line is probably responsible for the reduced effectiveness of flaps.

We suggest that the separation potential could perhaps be used as a theoretical tool for

correlating experimental results on flap effectiveness with Reynolds number.

In conclusion we remark that no attempt was made to compute the section drag of the

flap foil configuration herein. It is intuitively obvious however that large induced drag angles

will result near the hinge line which together with the logarithmically singular load will result in

a section drag penalty. These Reynolds dependent effects can be computed with the present

theory.
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III. Complete Viscous Theory of the 3-D Thin Wing

3.1 Basic Analysis

The remarkable feature of the present theory is that the entire program can be carried

out for a 3-D thin wing configuration. Most of the arguments follow from the 2-D case and

will not be repeated in detail. Some features are quite different and will be noted. Some of

the results derived herein may also be found in the AIAA lecture notes (Yams 1990).

The "belt sander" concept is again used to remove the primary boundary layer.

Using vector notation, the perturbation viscous problem and boundary conditions are (see

(2.1.2)):

dive=0

oN 1
- m curl c3

-_x + gradp = 2cr

c3 = curl _ dive3 = 0

On S:u=v=0, w=Of=-o:(x,y) (3.1.1)
0x

where all dimensionless quantities are defined as in Section 2. The length c is the mean

aerodynamic chord

S b
c= -= -- (3.1.2)

b A

where b is the span, S is the planform area and A is the aspect ratio. Alternatively, we

can write the problem in terms of pressure and vorticity:

On S:

V2p = 0

c)x 2o"

Ov Ou
coz = =0

div& = 0 (3.1.3)

which implies that C0z= 0 everywhere and we have,

49

PRECEDING PAGE BLANK NOT FILMED



_= la___
3x 2o" o3z

___. 1i_
3y 2o" 3z

_-r÷Tz -- _t, _y - _z j
(3.1.4)

These boundary conditions are fundamental as we have discussed before (Yates 1990).

The first two equations show how a pressure gradient along the surface produces vorticity

transverse to the gradient--a viscous micro version of Prandtl's wing theory. The last

equation shows how viscosity modifies the balance of the normal pressure gradient at the

surface. This boundary condition is responsible for the viscous correction to the usual

inviscid load-downwash kernel as we will see below.

With the integral momentum and energy balance discussed by Yates 1990, we

obtain two remarkable equations for the resultant lift and drag-due-to-lift:

CZ, = _2PU_S = dydz o)x . y
(3.1.5)

D 1 _dV(cox2+ogy2) (3.1.6)c_=y2pu_s=_ v

where T is the Trefftz plane and V is the entire volume of fluid. The drag formula is

quadratic in the two nonzero components of the interactive vorticity while the lift is linear in

rex. This will lead directly to the well-known quadratic relation between lift and drag.

An important difference between the 2-D and 3-D problems is that the latter has two

components of vorticity. Fortunately, we can represent COx and a_y in terms of a single

function. Since

3°gx _-_ = 0 (3.1.7)
0x 0y

we let
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aB aB

_x ,gy roy _ (3.1.8)

where B is like a vorticity stream function. With (3.1.3) we note that B must satisfy the

diffusion equation

d.._--B= I-.-LV2B (3.1.9)
a_x 20"

The fundamental solutions for p and B can be used to represent the general solution in

terms of unknown source strengths q0 and ql:

with

P = _ _J d_drl q°( _' rl)R

eO(X-¢-R)
n =_dCdn q_(¢,n).

R
s

dB

Compute the limit of p and "_z as z_ 0-&-_on S to obtain

(3.1.10)

(3.1.11)

Introduce the load function

p(x,y,0+) = :l:2_q0(x,y)

_--_zz=O± = T-21r.ql(x,y )
(3.1.12)

l(x,y) = p(0- ) - p(0 ÷) = 4zq o (3.1.13)

Next we use the x momentum equation

to get

_ _ _+ap- x a°'y- 1
tgx cgx 20" 3z 20" v3x tgz

u=- p-_ 20"
(3.1.14)
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Since u must be zero on S we obtain

1 O__ (3.1.15)p(x,y,O+)=
2tr 0Zlz=0+

which with (3.1.12) and (3.1.13) yields the source strengths q0 and ql interms of l

t(x,y) trt(x,y)
q0 = _ ql = (3.1.16)

4tr 2tr

The y momentum equation

_=-_ P + 2"'_ (3.1.17)

with (3.1.14) shows that v = 0 on S. The representations for p and B are

p= d_drl R

e,r(x-_-R)

,,: ,
dB OB

cox _ o_y cgx (3.1.18)

Finally, we combine these representations in the vertical momentum equation, integrate

from _oo to x and use the boundary condition on w to get the 3-D wing load equation,

with

--_ _f d_drl £ KL (X - _,y - rl) = -a
S

KL=--_t,.°3 ¢l-e_(X-R)IR )-  V1(1+ :<==_.,

(3.1.19)

(3.1.20)

The inviscid and viscous load kernels KL(x,y) are plotted in Figure 3-1a and b

respectively on Reynolds scaled coordinates X = ox, Y = cry. Each kernel is the upwash
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induced by a point load at the origin. Note that the inviscid kernel is much more singular

than the viscous kernel. Also, we point out that the complete structure of the viscous

kernel is buried on the scale of 1/_ inside the singular region of the inviscid kernel.

Resultant lift

It is instructive to derive an expression for the resultant lift in terms of l

vorticity relation (3.1.5) and the integral representation of COx. We get

But

using the

2_rf f 8 e -°_1 d_do'l'ea(X-_) _Idydzydy R (3.1.21)CL= 2A
S T(x)

e_aR 2_ .0 -o(x2+r2)/k_

= fdOfrdr e , =?e -_xl! (x ÷;
(3.1.22)

so that for x downstream of any point on S we obtain

CL = 2_f l dxdy (3.1.23)
S

which is the correct dimensionless representation of the lift coefficient in terms of the

pressure jump or load 1.

Drag.due-to-lift

One of the most remarkable features of the 3-D viscous wing theory is that the drag

coefficient (3.1.6) can be evaluated explicitly in terms of the load function just as it was in

the 2-D problem. The derivation is given in detail in Appendix B. Here we record the f'mal

result

Co "-- _u

I cgt cgl

8_A _ dxdy N" _lSd¢drl--_ KD(X - _,y- n)

1 re 3l 31

8_A J_ dxdy-_. _ dCdo_. KD(X- ¢,y- O)
S

(3.1.24)
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with

_:D(Z,Y)=t"lY-771+KE(x,y)

= I[E(a(R -Ixl)) + fx(a(e + Ixl))lKE(x,Y)
z

•(3.1.25)

(3.1.26)

the standard exponential integral. This is perhaps the single most important result

presented in this report. The drag-due-to-rift is a correlation of the spanwise and chordwise

gradients of the load in the viscous induced drag kernel K/r---not too surprising since the

load gradients are the source of all vorticity which contribute to the drag. This important

induced drag kernel is plotted in Figure 3-2 with respect to Reynolds scaled coordinates

X = gx, Y = cry to reveal the viscous structure.
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Figure 3-2. Contour plot of the viscous induced drag kernel function.
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If we drop all terms that depend on the Reynolds number o we obtain one

representation of the classical induced drag that depends only on the spanwise load

gradients; i.e.,

1 Ol O!

CDd_f_t I = --_ I: dxdy--_ I: d_d_7-_-_ tn[y - rl[

1

=--ff--._ ! dy OL , BL . ,
(3.1.27)

with the span loading

L= I t(x,y)dx (3.1.28)

c(y)

The "inviscid" logarithmic kernel in (3.1.27) cooresponds to the horizontal lines in the plot

of Figure 3-2. For the elliptic span load distribution it is easily verified that (3.1.27) yields

the well-known minimum drag result

C D c.ht_iea 1 = C_
ffA

minimmn

(3.1.29)

independent of the details of the chordwise load distribution and the Reynolds number. We

re-emphasize the point that we have derived this well-known result via the formula (3.1.6)

that is unquestionably of viscous origin! All drag by whatever name we may give it is of

viscous origin.

Another immediate result can be obtained with (3.1.24) if we assume that the span

Ot

becomes infinite and _- = 0. Then the first integral is zero and the y integral of KE can

be evaluated to obtain our previous result (2.1.31) for the section drag due to lift. We have

already demonstrated the power of the 2-D theory in establishing the optimal chordwise

load distribution to minimize section drag. Also we derived a Reynolds independent drag

component for the fiat plate at angle of attack--the leading edge suction. The formula
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(3.1.24)combinesall of these features in a single expression for the drag-due-to-lift that is

Reynolds number dependent.

Comment on Greene's "viscous induced drag"

G.C. Greene (1988) proposed a modification of the traditional approach to the

minimum induced drag problem that in principle uses the fundamental formula for drag in

terms of enstrophy and the vorticity production formulas in terms of pressure gradients.

Instead of minimizing the drag, however, he minimized the streamwise vorticity production

by minimizing the square of the span load gradient which he incorrectly claims is the drag.

The resultant span load is certainly not elliptic but the drag is also not a minimum.

Furthermore, Greene's formulation does not reveal any of the coupled spanwise/chordwise

structure of the viscous induced drag kernel in Figure 3-2.

Minimum drag-due-to-lift

The analysis of minimum drag and optimal wing loading is sa'aightforward with the

above formula for Co. We construct the functional on g,

(3.1.30)

where _. is a Lagrange multiplier for the constraint on CL. The variation of (3.1.30)

yields the Euler equation for optimal wing loading. Eliminating the Lagrange multiplier we

obtain the following results that may be compared with those in Section 2.1:

-'_ V2 JJ d_drl. F. KD(X-¢,y- r/)= 1
S

(3.1.31)

with
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V2 0 2 0 2

2A :2

CD--[q-_'L

t(x,y)= 2ACLr(x,y)/IIFII

IIFII= _ e _y
S

(3.1.33)

The optimallocalangleof attackorcamber slopedistributionisgiven by

ot(x,y)=--_ _sl d_drl" t" KL
(3.1.34)

where KL is given by (3.1.20). For a given planform the above theory will yield the

optimal load distribution and camber shape both spanwise and chordwise. Classical

minimum drag theory or Greene's modification can only yield information about the span

load distribution.

Separation potential

By inspection of the load-downwash relation (3.1.19), we observe that the inviscid

and viscous parts of the kernel function KL are separable if we introduce some device for

omitting the neighborhood of the stronger singularity of the two individual parts (e.g.,

Hadamard finite part). Thus, we can define a 3-D viscous induced angle or separation

potential av. We write

with

and

l sd¢,ln.tKm,, =-(a+ o,v)
(3.1.35)

av =--_ _d_drl. t. K,, (3.1.36)
S

eKv = Ox R iy \ R/ea(x-R) (3.1.37)
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Theusualinviscid kernel is,

d 1 o pl(l+X]] (3.1.38)

Our main interest here is in the separation potential av.

A 9 such that

l= _A¢

is zero on the leading edge of S and takes on the valuewhere A_

edge where

Atp,, =- f l(x,y)d.x =-L(y)

c(y)

Integrate by parts in (3.1.36) and use the above results to get

We introduce a doublet strength

(3.1.39)

Aq_e at the trailing

(3.1.40)

ctv(x,y) = -_ ! drl L( rl)Ke + l-Lv2 f_ d_drl Atp4_ s

e tr(x-_-R)

R
(3.1.41)

where Kve is the viscous kernel (3.1.37) for source points on the trailing edge

(_ = Xe(rl)). Explicit examples of the separation potential are given in Section 3. For high

Reynolds number, it provides a powerful new tool for assessing the practicality of

planform geometries and selected camber distributions.

3.2 High Reynolds number results

At present the status of the 3-D theory is incomplete. Many examples remain to be

calculated and derived asymptotically to complete the program. Nevertheless, we present

some key results at high Reynolds number that illustrate the utility of the viscous analysis.

When o >> 1, the various viscous kernels in Section 3.1 become highly banded in

the spanwise direction. For example, consider the viscous kernel (3.1.37) or the integrand

in (3.1.41). The object

etr(x-_-R)

R
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decaysexponentially for oly-rll >> 1. In fact the relation o(x-_-R) = C defines a

viscous parabolic zone of influence that opens downstream of the source point (_,rl).

Thus the object has the behavior of a delta function and we write

with

-oR
e
_=CS(y) (3.2.1)

R

e-OrR

C= I dy---_ = 2Ko(Olxl) (3.2.2)

which reminds us of our previous 2-D results. With the above we can write

K,, --- -28(y)_e°XKo( o_xl)

X

- 2S"(y) I d_ea_ If°(°_¢[)
--oo

(3.2.3)

We further note that for x < 0, Kv becomes exponentially small on the scale of 1/c. Thus

we can neglect the fast term in the separation potential (3.1.41) and write

Otv(X,y) = _ V2II dCdrlA_peO(X-_)Ko(o]x- _l)_(y - rl)
S

(3.2.4)

Finally, we replace the Bessel function by its asymptotic approximation to get

1 V 2
°_v(x'Y)= 22._--_ "

x

Xo(y) 4x- 
(3.2.5)

where Xo(Y) is the leading edge coordinate. When the function t_v is small, the solution

of the inviscid problem with trailing edge Kutta condition is a valid solution of the load

problem. However, we will see that o_v can become quite large near the trailing edge and

at lateral edges that are aligned with the flow. This function can be computed routinely
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with the output of a doublet lattice solution of the wing lift problem. It is the 2-D planform

Laplacian of the chordwise Abel transform of the doublet strength A_p.

Prandtl's relations

The differential relationship between shed streamwise vorticity and span loading is

well known in classical wing theory. We have already noted that the first two of Equations

(3.1.4) arc micro versions of Prandtl's early wing theory that follow directly from the

Navier Stokes equations. With the representation of vorticity in (3.1.18) we can derive

another intermediate load vorticity relationship that illustrates Prandtl's formulas. We

define the local circulation components

But

with

Yx = _xdz _ty = 7(.Oydz

--_ --O0

} 7o o
=_ Bdz =-_ Bdz

Oy Ox

B dz=- d_ dz e-aR
R

=--_ ff dCdrl gee(X-_'Ko((rR)
S

(3.2.6)

(3.2.7)

(3.2.8)

Now for o >> 1, Ko(oR) has delta function properties with respect to y. Thus

with

and

KO( (rR ) = C_5(y- 7"1)

c= J"Ko(o-R)ay

(3.2.9)

(3.2.10)
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Thus

--co S

x

Xo

r. =- de t(_,y) x<x.

01.,
=-_ X>X e

dy

yy = t(x,y) x < xe

=0 X>X e

(3.2.11)

(3.2.12)

which are the well-known wing theory relations. For x > Xe (the trailing edge) the

spanwise circulation is zero and the streamwise circulation is the negative of the span load.

Drag-due-to-loads

Next we consider the kernel ICE

loads and in the minimum drag problem.

to exploit. Consider

(see (3.1.25)) that appears in the drag-due-to-

It too has delta function properties that we want

with

EI(cr(R +_cl) ) =__C±_(y)

c±- _ayex(o_R-+lxl)) (3.2.13)

Integrate by parts to get

C+- =e'r'lXl _dy (l _)e -aR

= 2[xle:rlXl(Kl(_xl)T Ko(Olxl)) (3.2.14)
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For c_>> 1

and

we obtain the asymptotic results

C + =0

-4 /rC- - Ixl

f
2KE(x,r) = "_lg'Z "_l _(Y)

(3.2.15)

(3.2.16)

Substitute (3.2.16) into (3.1.24) and rewrite after integration by parts as

1 , 0L, 3L

Co = ---ff---_ J dy---_ J do "_n tn [y - 771

S_ _I4 4A_ g(x'y)V2['d¢ ¢1
¢

(3.2.17)

where c and b denote integration over the local chord c(y) and total span b. The above

result has been derived somewhat formally with little regard for the singular behavoir of

g(x,y) near free edges. We have already shown with our 2-D analysis that the leading

edge singularly leads to an order one contribution to CD --the leading edge suction or

absence thereof. Singularities at the wing tip will also lead to a singular and perhaps order

one contribution to CD. Further analysis will be required to verify or refute this suspision,

but the second derivative with respect to y in (3.2.17) is a strong indication that such is

the case.

Minimum drag problem

The problem for the minimum drag load distribution can also be reduced by using

the above asymptotic approximation for KE. We write (3.1.31) in the form
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I _2
4_r o_y_c"I_ d_drl F(¢'ri) tnly- 711

S

+ l-i" V 2" _ d_drl F(¢, 7"1).KE(X - ¢,y - rl)= 1
4_

S

(3.2.18)

The second term is the new feature of the viscous theory. Without this term we recover the

classical equation for the minimum induced drag span load distribution

1 a2A,
Idrl F(O)tnly- 711= 1

4 -'a
(3.2.19)

with the elliptic load solution

F(y)= ]F(x,y)dx=4a]A2- y 2

c(y)

and famous formula for induced drag:

UFII= 2 z.A 2

C o = --_ (classical) (3.2.20)

If the span becomes infinite with uniform chord and we neglect all spanwise derivatives,

we recover the 2-D minimum section drag problem that was discussed in Section II.

A plausible method of attacking the combined problem is the following. Since the

two integral terms in (3.2.18) are of different asymptotic order we might seek a solution

F(x,y) such that each term individually is a constant; i.e.,

1 a 2

4_r a_yT _ drl FOT)lnly- r/I= C0
b

1 V2
2A_ _d¢ F(¢,y)_f_-¢l=C1 (3.2.21)

¢

With
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Co +--_ = 1 (3.2.22)

the global span loading F(y) will be elliptic with small O(1/'Vt-_) Reynolds number

corrections. Away from the tip region F(x,y) will tend to the 2-D result obtained

previously. A more careful numerical analysis of the second of equations (3.2.21) should

in principal yield the optimal load distribution near the tip.

We conclude with the remark that the optimal load equation can be expressed

compactly as the 2-D Laplacian of a single integral expression; i.e.,

1 V2
_ d_drI F( _' rl)KD(X- _'Y- rl) =1
S

(3.2.23)

where KD is the viscous induced drag kernel (3.1.25). This result follows from the fact

that the fin'st term in (3.2.18) is independent of x.

3.3 Example of the separation potential

To conclude our present treatment of the 3-D wing we derive an explicit formula for

the high Reynolds number separation potential (3.2.5) and illustrate the result with a

numerical example for the rectangular wing. It is convenient to work with the load form of

(3.2.5) which we obtain with a single integration by parts. The result is

x

1 V2
av(X,y)- _ _d_ l(_,y)_-_ (3.3.1)

Xo

where _ >> 1. In general we would implement this relation by solving for the inviscid

load or doublet strength A9 with a trailing edge Kutta condition. Then calculate av(X,y)

numerically to obtain a map on the surface where separation can be expected--a post

processing operation with a doublet lattice solver. Below we assume a general form of the

load distribution and derive an analytic expression for t_v.

Consider a load distribution of the form
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t(x,y)= 2 L(y) ,[Xe-X (3.3.2)
(x-eZXo) X-Xo

where Xo(Y),xe(y) denote the leading and trailing edge of the wing respectively and L(y)

is the span load, i.e.,

Also

X£

L(y) = Ida: l(x,y)

Xo

A

1 iL(y)dyCL 2A
-A

(3.3.3)

(3.3.4)

where A is the aspect ratio. Substitute (3.3.2) into (3.3.1) and introduce the change of

variables

= x 0 + 2(x e - xo)k 2 sin2cp,

k2= x- xO

X e -- X o

0< cp< n:/2

(3.3.5)

We obtain

with

4 V 2 [L(y)J(k)] (3.3.6)
¢xv(x'Y) = 3x 2x/2-_-_

[.,(y)= L(y)(xe - xo)_

J(k) = (I+ k2)E(k)-(l-k2)K(k) (3.3.7)

The elliptic integrals follow from results in Appendix A. The final operation is to reduce

the derivatives that are indicated in (3.3.6). We use the known results for derivatives of E

and K,
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g ,l;

E-K

k

E K

k(1-k 2) k
(3.3.8)

with the following formula for

to obtain the following:

0k 1

& 2k(x,-xo)
(3.3.9)

dJ J'(k) 3E

dx 2(xe-xolk 2(x,-xo)

--_-2(x.-xo)E(x, -Xo)k
3(E- K)

4(x, - Xo)2k:
(3.3.10)

Also

dJ
jp ..-_-k, 3kk,e

02J

__l,.2.,t,_,kk,)e + -i--gr- + 3kk_e- X

- 3(2k, +k 3kyK (3.3.11)

where

obtain

or

k depends on

FL .(o2._ _._ _, aJ -,, ]4 [ (yJt dx"_'_f-+"_",2"J+ 2L (y)-_"+ L (y)" Ja,,(x,y) = 3_ 24T_

'_'= _ (x,-xo)(X-Xo)

_24T_.kkye_3zc2._._SL'(y)4L"(y) [(l+k2)E-(1-k2)K]

y through (3.3.5). Introduce the above derivatives into (3.3.6) to

(3.3.12)
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Rectangular wing

so that

For the special case of a rectangular wing, k is independent of y and,

x o = -1, x e = 1, k2 = 1 + x L = "_L(y)
2 '

av= 4_'_'-_''_kL(Y)E-K 3n:'_/-_4L"(Y)[(l+k2)E_(l_k2)K]

(3.3.13)

(3.3.14)

Now assume an elliptic span load

L(y):-)CL(1-y21A2) j4 (3.3.15)

where A is the aspect ratio. Then

L" 4CL /" 2/--2_-_
=-_--ftl-y 1,'t ) (3.3.16)

and

r(K-e), 1 2,A2,_j + 16, _kZ)Kl.(1 yVAZ)- }= ct_. I ) 3__._[(a+k2)E_( 10_v /1:2

(3.3.17)

The first term has a logarithmic singularity along the trailing edge (k _ 1) while the

second term has a much stronger algebraic singularity at the cut-off rectangular tip---a result

of the second y derivative in (3.3.1). The separation potential scales linearly with the lift

coefficient and inversely with the square root of the Reynolds number which is typical of

most results obtained with the linear viscous theory. The importance of _v is in its

variation over the planform. We have plotted contours of the normalized separation

potential

S(x,y) = _ (3.3.18)
CL
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in Figure3-3for A -- 4. Also, we have overlaid contours of the doublet strength

A_p = - I t( _, y)d_

-1

4c,.,1' - + sin-1 x + l__--_-x2) (3.3.19)

for a unit lift coefficient. These contours are the vortex field lines which all turn and

separate at the wailing edge in accordance with the Kutta condition. The striking feature of

the contours of S(x,y) is the singular behavior near the tip. A strong separation zone is

indicated that originates at the tip leading edge and spreads inboard along the trailing

edge--a physically appealing result.

1.6

1.4

1.2

0.8

0.6

0.4

0.2

Solid lines = separation potential [0:0.1:3]

Dashed lines = doublet strength or vortex lines [0:0.1:1]

cl

Root _7 Leading edge Ti

", \ : i

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 3-3. Separation potential for a rectangular wing: A = 4.

The tip separation zone is actually indicated in the general formula (3.3.12) if we

note that /_,"(y) is the second span derivative of the product of the span load L(y) times
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the square root of the local chord (Xe-Xo) 1/2 (see (3.3.7)). This formula also suggests that

the tip separation region could be significantly reduced in size by contouring the planform

such that the derivatives of L(y) are regular at the tip.

locally elliptic, i.e.,

L(y)=O(1- y / A) _

and that

Then

For example, assume that L(y) is

y _ A (3.3.20)

xe-xo=O(1-y/A) u (3.3.21)

l+lJ

L(y)=O(1- y / a)-2- (3.3.22)

and the derivatives of L are regular if v = 1. Thus, a wing tip that tapers smoothly to a

point appears to indicate a regular behavior of the separation potential near the tip if our

assumption of a local elliptic loading is correct. It is a curious fact that the fins of many

marine mammals and fish and many birds have highly pointed wing tips. Also, the wing

tips of recent transport aircraft have evolved towards this shape (e.g., the Boeing 757 and

767). For a discussion of skewed and pointed wing tips, see Vijgen, et al. (1987). The

small induced drag advantage that these authors report may be secondary compared to the

reduction of the separation potential at higher angle of attack.
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IV. Conclusions and Recommendations

A unified viscous theory of lift and drag of thin 2-D airfoils and 3-D lifting surfaces

has been developed in detail. The theory is "complete" in the formal sense of Birkhoffs

reversibility paradox stated in Section II but far from complete in terms of the opportunities

that it opens up for future research and technical applications. We summarize the main

conclusions of our effort and recommend a number of avenues for further research and

development.

Summary of conclusions

1. The lift and section drag-due-to-lift of thin 2-D airfoils can be calculated uniquely with

the viscous theory developed herein.

2. The high Reynolds number limit of the calculated lift (CL = 2_tx) is in agreement with

inviscid theory that uses the trailing edge Kutta condition. The high Reynolds number

section induced drag limit (c o = c 2 / 27r ) is in agreement with experimental results. The

theory shows conclusively that the section induced drag is due to viscous action at the

leading edge.

3. The section induced drag of profiled airfoils is of order 1 / _ where RN is the

Reynolds number based on the leading edge radius. While the scaling appears to be correct

(see Henderson and Holmes 1989), the magnitudes are about an order of magnitude

smaller than those reported for very thin NACA four digit series foils that operate in

turbulent flow. The calculated levels are in closer agreement with experimental values for

the "laminar flow bucket". The role of turbulent enstrophy and drag is discussed.

4. The theory of minimum section induced drag is a significant new contribution to the

theory of thin airfoils to the Author's knowledge. For the same lift coefficient, the

theoretical drag minimum is only about four percent smaller than the drag of a foil with

parabolic camber. The slope of the camber shape, however, is much more cusped at the

leading and trailing edges.

5. The minimum section induced drag corresponds to a constant value of the section

induced drag angle. The product of the load and the induced drag angle yields the local
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drag. This result is completely analogous to a constant downwash angle for minimum drag

in classical 3-D minimum wing drag theory. Minimum drag results are computed and

compared with those for the constant angle of attack and parabolic camber configurations

over 7 decades of Reynolds number from Stokes flow to 10,000.

6. The concept of a viscous induced "separation potential" is introduced with detailed

calculations for constant angle of attack, parabolic camber and an airfoil with trailing edge

flap. In the high Reynolds number limit, this new function can be computed with a simple

post processing operation on the load or doublet strength output of a standard wing theory

code. Nonlinear boundary layer calculations are not required. The three example

calculations indicate separation near the trailing edge and hinge line as we would expect.

The separation potential is a valuable design tool.

7. The viscous 3-D wing theory is formally complete even though we have not obtained as

many numerical examples as we would like - in particular a demonstration of the optimal

load distribution for candidate wing planforms.

8. The load/upwash kernel function of the 3-D viscous theory is less singular than its

inviscid counterpart. A unique solution of the load equation can be calculated without

recourse to a Kutta condition along the trailing edge. In the high Reynolds number limit,

the classical inviscid solution with Kutta condition will be obtained - proved by asymptotic

analysis.

9. One of the most (if not the most) important results of our work is a 3-D viscous induced

drag kernel function (see Figure 3-2). The correlation of the spanwise load gradients in

this kernel yields the classical induced drag in the high Reynolds number limit.

Furthermore, all of the 2-D section results can be recovered for high aspect ratio wings

when the correlation of chordwise load gradients in the kernel dominate the induced drag.

The interaction of spanwise and chordwise gradients at the wing tip is a topic that should be

given immediate attention with the new theory.

10. The 3-D viscous theory of minimum induced drag yields an equation for the universal

minimum drag load distribution both spanwise and chordwise for a given planform. The

use of this equation to analyze and synthesize wing tip designs is highly recommended.
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11. Theconceptof aviscousseparationpotentialis extendedto 3-D with anexplicit high

Reynoldsnumberexamplefor arectangularwing. Separationalongthewingtip startingat

the leadingedgeis predicted(seeFigure3-3). Again,the 3-Dseparationpotentialcanbe

calculatedwith theoutputof apanelcodewithoutresortingto boundarylayercalculations.

Recommendations

The viscous theory and concepts developed in this report open up a new avenue of

thinking about the fundamental viscous forces that act on a body in a moving fluid

medium;i.e., the lift and the drag. The theory is more than a conceptual exercise in that the

fundamental forces can be calculated from viscous first principles without recourse to

engineering empiricisms like the Kutta condition or the leading edge suction analogy. At

the same time, the theory does not invalidate but rather reinforces the use of these tools at a

deeper level. The theory also provides a solid foundation for further investigation of some

of the more difficult problems of airfoil and wing theory that involve geometric thickness,

finite angle of attack, turbulence and compressibility. The oscillating airfoil and wing and

motions that are designed for propulsion are amenable to the type of analysis presented

herein. In fact the original motivation for and effort on the viscous thin airfoil problem was

to solve the unsteady problem. The unsteady form of the resultant axial force contains the

drag discussed herein plus an additional term that represents the work done by the pressure

forces. This term can oppose the drag and thus makes it possible to design optimal

propulsion configurations. There are many possible avenues of fruitful research. We

enumerate a few of the more important ones below.

1. Complete the program for the 3-D wing with extensive numerical examples of optimal

minimum drag loading and separation potential for different planform shapes and camber

distributions. Place particular emphasis on the analysis and synthesis of wing tip shapes.

2. Include geometric thickness and mean boundary layer displacement thickness in the

basic viscous analysis of the 2-D and 3-D thin surface. Compare calculations with the

wealth of experimental data - in particular separation data. Quantify, if possible, the

concept of separation potential by direct correlation with experimental data.

3. Develop the entire viscous program for small amplitude oscillatory motion of finite

thickness foils and wings. Drag and separation potential due to unsteady motion can be

calculated.
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4. Include compressibility in the viscous formulation. The viscous origin of the

fundamental forces should become even more important as speeds become transonic.

5. Develop the minimum drag/maximum thrust analog of the theory to aid in the design of

optimal propulsion configurations.

6. Develop a rational theory of drag due to turbulent enstrophy and incorporate it into the

section induced drag theory.
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Appendix A

2-D Separation Potentials

L Constant angle of attack (see (2.2.20))

Let

so that

1 d ! d_ CL--2_Ct2_Ct,(x)= 2_ o_x _ _

_=-l+(l+x)sin2 _ 0<¢<_/2

,4(1- _2)(x- _) = _ 1+ x sin2O_/1_ k2 sin2
2

4(1- ¢2)tX£_)

Thus

o_v(x ) =

1 0

2 rt_'_-_ _--x[(cL - 2_oOK(k)+4rcaE(k)]

with

z/2 z/2

E(k)= IdO41'k2 sin2 0, K(k)= Id¢/41-k2sin2 0
0 0

With the derivative formulas,

E'(k) = (E- K) / k,
E K dk 1

K'(k) = -- =--
k(1-k 2) k' dx 4k

we obtain

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

a, (x) = 1 [(ct, - 2 z;a)(E / (1 - k 2
8 nr.Vt-_.-_k2 ) - K) + 4 nra( E - K)] (A.7)
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2. Parabolic camber (see(2.2.27))

1- _2 = 2(1 -k 2 sin 2 _)(1 + x)sin 2 _ = 4k2(1 -k 2 sin 2 _)sin 2

CL 03 x/2

Or, = _ 2_]2"_'Gax _d_'Vc2"4k2ql-k2sin2 _sin2 ¢
o

_._r_ k2 J"d_41- k2 Sin2 _ sin2 ¢
0

-----f_--_ sin 2 0-
sin 2 0 ] sin 2

2_/1- k 2 sin 2 J

C [" x/2_ ,.L!+- _ 41- k2 sin2 0

x/2 " --2-3 Id0_/1-/_ sin 2 0sin 2 0
J0

with

_ CL

z/2

dO41- k 2 sin2 _ sin20
o

(A.8)

(A.9)

Let m = k 2 and write

x/2

0 = E- _ dO41- msin 2 0 c°s2
0

(A.10)
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Now integrateby partsto get

• /2 [ m sin 2 _cos _ 0]

O=E- ! d_0[41-msin 2 ,sin 2 _+ _l_--ms--_n2 _ 'j

,_/2 _ _2 ¢(m sin _ _0-1 + 1)

=E-O- _o dO tXJ_ _/X-msin20

.,2 [ 1 ]=E-O-(K-E)+ _ dOsin2 q_ -41-msin2 O
o 1 - m sin2 O

Jr/2

=E_20_K+E+m! dO msin20-1+1X/1- msin2 0

or

and

=2E-20-K+_
K-E

m

0 = [(1 / m- 1)K+ (2 - 11 m)E] / 3

or, = x-_ (K-2E)

(A.11)

(A.12)
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3. Foil with flap

Consider the solution of the inviscid load equation

with

1 _d_/(-_). = 2_(x)
n: -t x-

a(x)=pH(X-Xo)

(A.13)

(A.14)

where ]3 is the flap angle and Xo is the hinge line. The solution of the load problem with

trailing edge Kutta condition is outlined below. The numerical algorithm for evaluating

the separation potential follows.

Load distribution

The general solution of (A.13) for any function a(x) is

For ot given by (A. 14) we evaluate

l(x) = 2,8 _d_
x,

(A.15)

1 1

= 2/3(1- x 2) _ d_ ! x + ¢

with

=2_[(1-x2)Z+xcos-lxo + 1_-_- xo2 ]
(A.16)
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_-'_° dO
= _ X < X o

x - cos 0
o

i dO= -- X> X o
x - cos 0

,.-, Xo (A. 17)

Use the known integral (Groebner and Hofreiter, Unbestimmte Integrale (1961), p. 122)

dO 1 , .f-l+xcos0+ l_-_-x 2sin01fx-coso-_x_ _°_L x-_ (A.18)

to get

and

1 , I-l+XXo+__-,/_o_l-,z_x_I
z_ l__x,og[ x-go I

t(x) = 1 2. l__x_[C-_p_os-'_o+4_-Xo

(A.19)

X-Xo I1 (A.20)

To satisfy the Kutta condition at x = 1, we require

and

2_ -- Cl"

cos -1Xo +13fi__x2 ° (A.21)

t(x) =
eL

x(cos -_Xo + l_- x_o) cos -_ o _ - log x - Xo IJ
(A.22)
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Separation potential

The separation potential is given by

with

oy,
_V _mm

I !d_ t(_)
(A.23)

We interpret f, (x) as the viscous induced camber. Since the load distribution has a log

singularity at x = Xo, we split the integral (A.23) into two parts x < Xo and x > Xo. Also,

we observe that the first term in (A.22) is the load distribution for constant angle of

attack. Thus, we can use the results (A.4) and (A.7) with ct. = 2nrtx to get,

_ CL

L. - e(k)

with

and

ct. K - E

5,° = 4 nr,4-_'G k 2
(A.24)

k2 = l+x
2 (A.25)

L = cos-'.Lo-Y,
2

COS -1 Xo + _-- X o

cos-' Xo.a,. + Oy, /

cos -_ Xo + (A.26)
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with

X m

rd t( j) X <Xo

and

c6 ["_d_ _(_) _''" _(_) ]

- Lj_, o-j a_ Xo
(A.27)

l(x) "- 1°_ '1- xx° - _ 1_%/_-_x2x- xo

For each of the three integrals (a to b) in (A.27), we set

(A.28)

= a+(b-a)s in2 O, d_ = 2(b-a)sinOcosOdq)

The result is

z12

f, = cL _-_ • _ d$sin +. +(-1 + (1 + x)sin + +)
0

-l <x <x o

(A.29)

I+IwE+Ir]2
---- C

0

sin Ocos 0./(-1 + (1 + x,) sin 2 O)

_l+x sin + ¢
l+x°

x___-Xo . "/;dOsin
+ct. V 2_rtr o O.t(x,+(X-Xo)sin2¢) Xo <x<l

(A.30)

The above formula is used in Section 2.3 to calculate the viscous induced camber for the

2-D airfoil with flap. The separation potential is calculated by numerical differentiation

in each interior analytic region. The numerical algorithm was also checked against the

analytic results for the constant angle of attack and parabolic camber cases.
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Appendix B

3D Viscous drag-due-to-lift

We derive a 3-D formula for viscous drag-due-to-lift in this appendix starting

with (3.1.6) of the main text with the auxiliary definitions (3.1.18):

with

c. =--!-1[av(co_+o,_)
4Atr_,

0B dB

cox 0y w, &

(B.1)

B= 2zl] d_drl'l(¢'rl) exp((ff(x-¢- R))R

Z2 ]112R=[ (x-_)_ +(Y- r/)z + (B.2)

Substitute (B.2) into (B.1), take the x and y derivatives inside the integral over S and

interchange the order of integration with respect to V and S. We obtain

l[,f ._ ol,, .,d,dl
co= 8,_Lqacan-_J!a¢ ,7-_.x(g-_l,l,-,'l)

with

, x,:l+-+'l,,,,-r,',,]
(B.3)

exp(- o'(R - R'))__.q..a dr,dydz.exp((o'(2x- 4)) RR'x(_, n) = z_ > 0 (B.4)

where R' is given by lB.2) with _ = r/= 0.

We evaluate X(_, 77) for the space [V: x<L] where L is some large number that

we eventually take to infinity. This step is essential since the integral is improper in the

far wake. Write
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L

with

I=fj'ay±
w

Then use the double Fourier transform to obtain the Parseval relation

(B.5)

(B.6)

with

1 _dczdfle,,_.-f'(x__,ot, fl)_.(x,a, fl )
(2_) 2 .

a, fl) = _ dydz exp(-i(cry + flz))F(x, y,_(x, Z)

and

exp(-o(x2 + y2z2+)t/z_)t/2)F(x,y, z) = (x 2 + y2 +

The asterisk denotes the complex conjugate in (B.7). Next we evaluate (B.8) using

standard Fourier cosine transforms:

(B.7)

(B.8)

(B.9)

or

F(x, cr, fl)= 4 i dycos ay" i dz cosflz, exp(-°'(x2 + y2 + z2)t/2)
o o (X2 + y2 + Z2)1/2

F(x,a,fl) = 4 i dycos ay. K0[(fl 2 + o"2)t/2 (x2 + y2)t/2 ]
0

(B.10)

with

so that

= 2_exp(-Alxl )

:t=(a_+p_ +o_)''_

(B.11)

(B.12)
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I= _ dc_tfle ''_ exp(-_([x- _[+[x[))
)]2

with

ii e-_=4 daap_os,_I,71
oo

_=lx-¢l+lxl>__o

Again evaluate (B.13) using Fourier transforms. Consider

e-_

f = i d fl _,2
o

(B.13)

(B.14)

and

o3f - e- _

-['oaP--T- = - r° (_Ca_ + °_ )"_)
(B.15)

Then

f = i d._Ko (g(a2 + o-2) _/2) (B.16)

I=4idotcosc_r_.idtKo(t(otz +0"2) '/z)

o

i exp(_o.(t2 + r/2) _/2)
= 2 iv dt (t 2 + r/2)vz

g

and with (B.5) we get

(B.17)

L

x(¢,,7)=_oj-_o_,,_+, _ exp(-_(_:_+,7__2)''')
-- I"-_1+-_ (t 2 "l" 772 )1/2

Integrate (B. 18) by parts to obtain

(B.18)
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1 idxexp(tr(2x_ _)). exp(-tr(q 2 + 0 2)112)
X =-__. (¢2 + r/2),/,

with

¢-Ix-¢l+lxl, ¢>0

Note that

sgn(x-_)+sgnx=-2 for x<0<_<L

= 0 for 0<x<¢<L

= 2 for 0<_<x<L

and

with

0 L ex_t ....r - ,, -2 + --2x1/2 ]}
x= f+fdx ptot.&-_______y )

.l j (_.2 + r/2)_n ,

_'=2X-_

4>0

a slight change of notation. Now let

t = 0"[(¢2+ r/2)_a- ¢1

(sgn(x-_)+ sgnx) (B.19)

(B.20)

(B.21)

(B.22)

(B.23)

__ de d_..d__¢
t (if2 dt" T]2)1/2 2

so that

X=-2E,(t(L))+IEt(t7[(_2+ 02) '/2 +I¢ID+½e, +¢)"'-I¢1])

with the exponential integral,

(B.24)

(B.25)

(B.26)
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For very large L

t(L) = O'[(2L- _) 2 + 772) 1/2 -(2L- _)]

=-_ (2L-_) l+ 2(2L-_)2

o772
""m

4L (B.27)

For L >> 07/2 / 4 we obtain

E 1(t(L)) = -2 In Ir_ + + In(L) + constant (B.28)

But neither the constant nor In(L) which is really In(x) contributes to the drag coefficient

in (B.3). Thus we can write

with

and

X = lnlr_ + K e (B.29)

1
x_(#,_)==tE,(_(R-1_1))+E,(_(R+I_l)n

g
(B.30)

R=(_2+ 02)1/2 (B.31)

Finally, we observe that In[ r_ is an irrelevant constant in the first integral of (B.3). Thus,

with the change of notation (2, _') -'* (x, _) and (r/, r/) _ (y, 17) we obtain the

final expression for the 3-D viscous induced drag coefficient:

Ol . II dCdrlfl_..l . Ko (x- ¢, y- rl)

1 tgl rrd=d o_!
8zrAIId-xdy"_'JJ _ rl"_'Ko(x-¢,Y- _)

$ $ (B.32)
with

Ko(x, y)= lnlYl+I{E,[ cr(R-Ixl)]+E,[ a(R +Ixl)]} (B.33)

A full discussion of this important result may be found in Section 3.2 of the main text.

B-5





br_ce ,_r3f_

1, Report No.

NASA CR-4414

4. Title and Subtitle

Report Documentation Page

2, Government Accession No,

A Unified Viscous Theory of Lift and Drag of 2-D

Thin Airfoils and 3-D Thin Wings

7. Author(s)

John E. Yates

9. Performing Organization Name and Address

A.R.A.P. Group, California Research & Technology Division

Titan Corporation

50 Washington Road, P. O. Box 2229

Princeton, NJ 08543-2229

12. Spon_ring Agency Name and Addre_

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

3. Recipient's Catalog No.

5, Report'Date

December 1991

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

505-59-54-01

11. Contract or Gr;'nt No.

L-74809C

13. Type of Report and Period 'Covered

Contractor Report

14. Sponsoring /_gency Code

15. Supplementary Notes

Langley Technical Monitor: Lawrence E. Putnam

16. Abstract

A unified viscous theory of 2-D thin airfoils and 3-D thin wings is developed with numerical examples.
The viscous theory of the load distribution is unique and tends to the classical inviscid result with Kutta

condition in the high Reynolds number limit. A new theory of 2-D section induced drag is introduced
with specific applications to three cases of interest: 1) constant angle of attack, 2) parabolic camber, and
3) a flapped airfoil. The first case is also extended to a profiled leading-edge foil. The well-known drag
due to absence of leading-edge suction is derived from the viscous theory. It is independent of Reynolds
number for zero thickness and varies inversely with the square root of the Reynolds number based on the

leading-edge radius for profiled sections. The role of turbulence in the section induced drag problem is
discussed. A theory of minimum section induced drag is derived and applied. Two new concepts, the
viscous induced drag angle and the viscous induced separation potential are introduced. The separation
potentialiscalculatedforthree 2-D cases and for a 3-D rectangularwing. The potentialiscalculated

with inputfrom a standard doubletlatticewing code without recourse toany boundary-layer

calculations.Separation isindicatedin regions where itisobserved experimentally. The classical

induced drag isrecoveredin the 3-D high Reynolds number limitwith an additionalcontributionthat is

Reynolds number dependent. The 3-D viscoustheory ofminimum induced drag yieldsan equation for

the optimal spanwise and chordwise load distribution.

17. Key Words ISuggest_ by Author(s))

Lift and Drag
Reynolds number
Unified Viscous Theory
2-D Thin Airfoils
3-D Thin Airfoils

19. SecuriW Cla=ff. (if this report]

Unclassified

18. Distribut_n Statement

Unclassified - Unlimited

Subject Category 02

_. Securi W Cla_f. (of this pa_)Unclassified

21. No. of _s _. Price

i00 A05

NASA FORM 1(_ OCT

For saleby the National TechnicalInformation Service,Springfield,Virginia22161-2171 NASA-Langley,1991




